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The Nosé theorem of the extended-system method of the constant-temperature molecular dynamics is
generalized by including the conservation of the total virtual momentum. It is proved that a canonical
ensemble of an (N —1)-particle system is generated from an extended system of an N-particle system
only if the total virtual momentum is zero. It is also shown that the resulting (N — 1)-particle system has
a slightly different mass spectrum than that of the original N-particle system. The consequences of this
new mass spectrum are relevant in the calculation of dynamical properties and the relaxation times of
the system, but irrelevant to thermodynamic averages. For practical considerations, numerical simula-
tions are performed and tested against this theorem. The differences in application of the Nosé theorem

and the generalized Nosé theorem are discussed.

PACS number(s): 05.20.Gg, 02.70.Ns, 02.60.Cb

I. INTRODUCTION

Molecular dynamics (MD) is a computational method
that numerically solves Newton’s equations of motion by
performing a discrete-time integration [1]. According to
the assumption of ergodicity, one can generate an ensem-
ble by collecting the physical states at each discrete time
step. The ensemble generated by the MD method de-
pends on the boundary conditions [2]. For particles in a
box the ensemble generated is the traditional micro-
canonical ensemble where only the total energy of the
system is conserved. For periodic boundary conditions
(which are preferred in simulations) the ensemble is no
longer strictly microcanonical because in this case the to-
tal linear momentum is also conserved [3].

In some cases, the neglect of the conservation of the to-
tal momentum will introduce only a small amount of er-
ror in the interpretation of MD simulation results [1].
However, there are cases where the conservation of the
total momentum should play a crucial role in determin-
ing the nature of an ensemble generated by the MD
method. We have discovered that the extended-system
method of Nosé is precisely such a case.

The extended-system method (ESM) introduces an ex-
tra dynamical variable to simulate the effect of the heat
reservoir or the pressure reservoir [4—-6]. The ESM of
the constant-temperature molecular dynamics is known
to generate a canonical ensemble of a physical system if
the extended system (ES) is ergodic [6-9]. This genera-
tion of a canonical ensemble from an ergodic ES is
guaranteed by the Nosé theorem within the Hamiltonian
formalism [6]. However, in this theorem, only the con-
servation of the total ES energy is used, and the conserva-
tion of the total virtual momentum and the total virtual
angular momentum are ignored [6].

One can safely ignore the conservation of the total vir-
tual angular momentum because it is not conserved dur-
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ing the simulation if a periodic boundary condition is
used [2]. However, one cannot ignore the conservation of
the total virtual momentum because this is conserved
during numerical simulations. Therefore the Nosé
theorem is no longer strictly valid for actual ESM simula-
tions. Consequently, any theoretical proof which will
determine the conditions under which one can obtain the
canonical ensemble of a physical system from the ESM
must include the conservation of the total virtual momen-
tum as well as the conservation of the total ES energy.

In this paper, we generalize the Nosé theorem by in-
cluding the conservation of the total virtual momentum
and prove analytically that a canonical ensemble is gen-
erated from the ES only if the total virtual momentum is
zero. This generalized Nosé theorem shows that the
physical system satisfying a canonical ensemble is an
(N —1)-particle system with a different mass spectrum
from that of the original N-particle physical system.

We also perform simulations with zero and nonzero to-
tal virtual momentum in order to demonstrate, in a prac-
tical way, the consequences of the generalized Nosé
theorem. Finally, we discuss the practical considerations
related to the difference of these two theorems.

This paper is organized as follows. In Sec. II we prove
the generalized Nosé theorem. In Sec. III we study the
effect of nonzero total virtual momentum using numerical
simulations. In Sec. IV we discuss the practical con-
siderations related to the generalized Nosé theorem. In
Sec. V we summarize and conclude.

II. GENERALIZED NOSE THEOREM

In this section, we prove the generalized Nosé theorem
by calculating the ES partition function with both the en-
ergy conservation and the total virtual momentum con-
servation which are the valid conditions for practical ap-
plications. The following is the generalized Nosé
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theorem: if ES is ergodic and if the total linear virtual
momentum of the N-particle physical system is zero, then
the ESM will generate a canonical ensemble for an
(N —1)-particle system with a different mass spectrum.

For the proof, we assume the ergodicity of the ES so
that the ES partition function has a microcanonical en-
semble form of energy 8 function and momentum 8 func-
tion. The partition function of an ergodic ES is

ZPI

i=1

’
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Z=c [ [ drdp, [ds dP,8(Hgs—E)8
i=1

2.1

where the ES Hamiltonian is expressed in terms of its
own canonical variables as follows [10]:

N p}
HEs(r[,pi,S,Ps)ZE 2+¢({r,})
i=12mys
PZ
+ 30 T8k Teuln(s) (2.2)

By introducing the center-of-mass (c.m.) momenta,
P, =p; —Py/N, the kinetic-energy term becomes a sum of
the relative kinetic energy and the c.m. kinetic energy as
follows:
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where M =3 m;. The partition function can be ex-
pressed using the c.m. momenta as follows:

Z=c| Ily[drid’p‘ifdsdPscS(HEs—E)S %ﬁf , (2.4)
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Finally, one introduces the physical momenta, p; =
tains the partition function as follows:
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Now, one can eliminate the momentum 6 function by
performing an integration of p and obtain

N N—1
Z=c[ [1dr; [1 db; [ds dP,6(Hg—E) ,

(2.6)
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where the argument of the energy 6 function, Hgg —E, is
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The next step is to diagonalize the inverse mass matrix
M1, where

M, =——+Ls, 2.8)

T omy m;

This can be done easily by introducing normal-mode mo-
menta ; such that

N-—1
N1 p? El Pi N1 7?2
= . (2.9)
2z 2mys? 2mys? ,-g] 2A;s2
If the masses are identical (i.e., m; =m), one then obtains
Ai=mfori=1,...,N—2and Ay_;=m /N. After this
diagonalization, the partition function becomes
P}
+¢({r,})+z+ngTmln( s)—E (2.10)

ar; /s, to eliminate the s variable in the kinetic-energy term and ob-

2

2Q (2.11)
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This integral has a similar form to the one in the original formulation of Nosé except for the presence of the c.m.
kinetic-energy term in the energy 6 function and 3N — 3 momentum integration instead of 3N. In the following, we per-
form the s integration, and discuss the consequences of the differences between the integral (2.11) and the original in-
tegral of Nosé [6].

In general, if P,7=0, the argument of the energy 8 function has two roots of s, s, and s,, as illustrated in Fig. 1, and
the & function becomes as follows:

é S(S_Si)
| =Ko /s +8kpTex /sls=;,

(2.12)
i=1

where K, =P3/2M. The integration over s gives the following expression:
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Obviously, the integrand is not the Boltzmann factor of a
physical Hamiltonian.

In the case of P;=0, the problem simplifies consider-
ably, and one can perform the integration over s in (2.1)
immediately. For completeness, however, we use (2.13)
and set K,=0. Since P,=0, there is only one root of s,
So, as shown in Fig. 1, and one obtains
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where g =3N —2 is used, and H|, is the physical Hamil-
tonian,
N—1 p'?
P;
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> 24,
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Therefore one obtains a canonical ensemble of the
(N —1)-particle system with the mass spectrum {A;}
from the N-particle system with the mass spectrum {m;,}
only if total virtual momentum is zero. This completes
the proof of the generalized Nosé theorem [11].

SO s

FIG. 1. Top panel illustrates two solutions of the equation
Ko/s*+gky Teuln(s)=E, with K,50. Bottom panel illustrates
the solution of the equation with K,=0.

(2.13)
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III. NUMERICAL SIMULATIONS

In this section we perform numerical simulations of the
extended Lennard-Jones (LJ) system with both zero and
nonzero total virtual momentum, and test the simulations
against the generalized Nosé theorem. In Sec. III A we
derive the analytic expression for the average moments of
the instantaneous temperature and the thermostat kinetic
energy from the canonical ensemble. In Sec. IIIB we
compare these quantities with the results of numerical
simulations.

A. Analytic expression of moments

In this section we describe the canonical-ensemble ex-
pression of the moments of the instantaneous tempera-
ture of the LJ system and the thermostat kinetic energy.
The instantaneous temperature 7 is defined as follows:

2

szK , (3.1)

where K is the kinetic energy of N —1 particles. The an-
alytic expressions of the moments of the instantaneous
temperature fluctuation are obtained from a canonical en-
semble as follows:

(TY=T,, , (3.2)
2
<T2)C=7T§xt , (3.3)
<T3>C=—f8—2T2m , (3.4)
3
(T, = % 32—f+6 T, , (3.5)

where f=3N—3, ( ) represents an ensemble average,
and (T™) ,={(T—(T)»)™).

The moments of thermostat kinetic energy are the fol-
lowing:

(K )=1kgTey , (3.6)
(K)o =WkgTe)*, (3.7)
(K2) . =(kgTe) (3.8)
(K} =13(kpTe)*, (3.9)

where K| is the thermostat kinetic energy.

B. Molecular-dynamics simulations

In this section we define the simulation parameters and
conditions, and describe the results of the simulations.
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TABLE 1. The reduced units of Ne are compared with the
conventional units. m, is the electron mass and a is the Bohr
radius.

Quantity LJ unit Conventional unit
[0) 1 1.05X10%n,a3
t 1 2.24 X lO"i}sec
p 1 0.050 A
T 1 36.23 K

We then discuss the results by comparing with the gen-
eralized Nosé theorem.

In the numerical simulations the reduced units of a LJ
system are used. For example, the LJ units of Ne are
compared with the conventional units in Table I. The
equations of motion are solved using the sixth-order Gear
predictor-corrector method [1]. To eliminate boundary
effects a periodic boundary condition is adapted, and to
avoid self-interactions due to the long-range interaction,
the LJ potential is cut at ». (r,=2.5). To compensate the
cutoff effect, a long-range correction is made by adding
the average of the interaction beyond r,. The precision
of the calculation is monitored by preserving the total en-
ergy of the extended system within 0.2% drift during the
whole simulations (—0.04% drift for nonzero total
momentum, and —0.16% drift for zero total momen-
tum).

To obtain a fast convergence of the moments, a small
(32-particle) LJ system is chosen for the simulations. The
initial configuration of the simulations is a fcc lattice
structure, and the initial velocities are randomly assigned
with a given mean value determined by T,,,. For the
case of zero total momentum, the initial velocities are
corrected to give a zero sum. On the other hand, for the
case of nonzero total momentum, a certain amount of
c.m. velocity is added to the initial velocities. The initial
values of thermostat and thermostat velocity are chosen
to be 1 for all simulations.

In the simulations, the thermostat effective mass Q is
chosen to be 1, which gives a fast convergence for the
liquid phase (T,,=1.5, p=0.8) of the simulations.
Simulations are done with 10° time steps for a liquid
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FIG. 2. c.m. kinetic energy K,/s? as a function of time for
the extended LJ fluid (T, =1.5, p=0.8) with nonzero total
momentum and thermostat effective mass Q =1. The time step
is At=0.001, and the total number of time steps is 10°. Re-
duced LJ units are used for the energy and the time.

K. CHO, J. D. JOANNOPOULOS, AND LEONARD KLEINMAN 47

TABLE II. Four moments of the instantaneous temperature
of the LJ system, and four moments of the kinetic energy of s
are compared with the predicted values of the canonical ensem-
ble. The results are for simulation in the fluid phase (T, =1.5,
p=0.8) of the LJ system with |Py|#0. The number of time
steps is 10® and Q =1.

Simulation Canonical-ensemble value

(T) 1.504 94 1.5

(T?). 0.033 64 0.048 39

(T?), 0.001 41 0.003 12

(T%). 0.003 44 0.007 22

(K,) 0.51999 0.75

(K?), 0.540 88 1.125

(K}, 1.12309 3.375

(K}, 435128 18.984

phase (T, =1.5, p=0.8) for both zero and nonzero total
momentum. The total virtual momentum is found to be
constant with 5-6 significant figures.

The results of the simulation for nonzero total momen-
tum are shown in Figs. 2—4. Figure 2 shows the c.m. ki-
netic energy K, /s as a function of time. Figure 3 shows
the average temperature and the average thermostat ki-
netic energy, and Fig. 4 shows the second moments of
temperature and thermostat kinetic energy. The final
values of the average moments are summarized in Table
II. For this simulation, the c.m. kinetic energy is very
large (~25T,,), and clearly both the averages and the
second moments do not converge to the canonical-

o I R
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FIG. 3. Average temperature and average thermostat kinetic
energy for the extended LJ fluid (T,,=1.5, p=0.8) with
nonzero total momentum. The thermostat effective mass is
Q =1, the time step is A =0.001, and the total number of time
steps is 10%. T is the instantaneous temperature of the LJ sys-
tem, and K, is the thermostat kinetic energy. Horizontal
dashed lines are the theoretical values of the canonical ensem-
ble. Reduced LJ units are used for the temperature and the
time.
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FIG. 4. The second moment of temperature fluctuations and
the second-moment thermostat kinetic-energy fluctuation for
the extended LJ fluid (T, =1.5, p=0.8) with nonzero total
momentum. The thermostat effective mass is Q =1, the time
step is Az=0.001, and the total number of time steps is 10°.
Horizontal dashed lines are the theoretical values of the canoni-
cal ensemble. Reduced LJ units are used for the temperature
and the time.

ensemble values shown as dotted lines.

The results of simulations for zero total momentum are
shown in Figs. 5-7. Each component of the total
momentum is smaller than 10~ during the whole simula-
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FIG. 5. Average temperature and average thermostat kinetic
energy for the extended LJ fluid (T, =1.5, p=0.8) with zero
total momentum. The thermostat effective mass is Q=1, the
time step is Az=0.001, and the total number of time steps is
10°. Horizontal dashed lines are the theoretical values of the
canonical ensemble. Reduced LJ units are used for the temper-
ature and the time.
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FIG. 6. The second, third, and fourth moments of the tem-
perature fluctuations for the extended LJ fluid (T, =1.5,
p=0.8) with zero total momentum. The thermostat effective
mass is Q =1, the time step is Az =0.001, and the total number
of time steps is 10°. T is the instantaneous temperature for the
LJ system, and K; is the thermostat kinetic energy. Horizontal
dashed lines are the theoretical values of the canonical ensem-
ble. Reduced LJ units are used for the temperature and the
time.
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FIG. 7. The second, third, and fourth moments of the ther-
mostat kinetic-energy fluctuations for the extended LJ fluid
(T =1.5, p=0.8) with zero total momentum. The thermostat
effective mass is Q =1, the time step is Az =0.001, and the total
number of time steps is 10°. Horizontal dashed lines are the
theoretical values of the canonical ensemble. Reduced LJ units
are used for the temperature and the time.
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TABLE III. Four moments of the instantaneous temperature
of the LJ system, and four moments of the kinetic energy of s
are compared with the predicted values of the canonical ensem-
ble. The results are for simulation in the fluid phase (T, =1.5,
p=0.8) of the LJ system with P,=0. The number of time steps
is 10°and Q=1.

Simulation Theory Error  Corresponding T

(1) 1.50009 1.5 0.01% 1.50009
(T?), 0.04858 0.04839 0.39% 1.502 99
(T?). 000304 000312 —2.56% 1.486 80
(T*). 0.00723 0.00722 0.14% 1.495 06

(K,) 0.74467 0.75 —0.71% 1.489 34
(K2). 1.06167 1.125 —5.63% 1.45717
(K2), 296659 3.375 —12.1% 1.436 88
(K}), 158016 18984 —16.8% 1.43274

tion. Figure 5 shows that the average temperature and
the average thermostat kinetic energy are quite well con-
verged to the canonical-ensemble values. Figure 6 shows
that the higher moments of temperature are also very
well converged to the canonical-ensemble values. The
higher moments of K, in Fig. 7 show a slower but a
reasonable convergence to the canonical-ensemble values.
The final values of the average moments are summarized
in Table III.

Therefore the simulation with P,70 does not produce
a canonical ensemble whereas the simulation with P,=0
produces a canonical ensemble. Consequently, both
simulations of the LJ potential system with zero and
nonzero total momentum satisfy the generalized Nosé
theorem.

Simulations are also performed with different values of
c.m. kinetic energy. For a small c.m. kinetic energy
({Ky/s?) <T,,) the results are found to be quite similar
to those of zero total momentum. This fact suggests that
quite a good approximate canonical ensemble can be gen-
erated with nonzero total momentum even if the total
momentum is on the order of the external temperature.
However, as the c.m. Kkinetic energy increases
({(Ko/s*)>>T,,), the deviation from the canonical-
ensemble values becomes large. These facts guarantee
the numerical stability of generating a canonical ensemble
by ESM in practical applications where computational
errors inevitably introduce a small nonzero total momen-
tum. This numerical stability is further discussed in Sec.
IV.

IV. PRACTICAL CONSIDERATIONS

In this section we discuss the differences between the
Nosé theorem and the generalized Nosé theorem from a
practical viewpoint. We discuss three separate topics.
The first is the new mass spectrum A; of the resulting
Hamiltonian satisfying a canonical ensemble. The second
is the effect of nonzero total momentum on changing the
average moments of temperature and thermostat kinetic
energy from canonical-ensemble values. The third is the
effect of changing the number of degrees of freedom from
3N to 3N —3 on the interpretation of numerical simula-
tions.

K. CHO, J. D. JOANNOPOULOS, AND LEONARD KLEINMAN 47

First, in the proof of the generalized Nosé theorem one
begins with a physical Hamiltonian with mass spectrum
{m;}, i=1,...,N and obtains the final Hamiltonian
with mass spectrum {A;}, i=1,...,N—1. In general,
the new masses are different from the original masses.
For the special case of N identical original masses
(m;=m) one finds a final mass spectrum: A,=m for
i=1,...,N—2and Ay_;=m /N. This new mass spec-
trum will introduce, in principle, an error in calculations
of the dynamical properties. Of course, the conventional
MD introduces the same error [11], and as N becomes
large, the contribution of the light mass becomes unim-
portant in practical considerations. As far as thermo-
dynamic averages are concerned, the difference of mass
spectra is always irrelevant because of the equipartition
theorem. The only significant change relevant to the
thermodynamic averages is the reduction of the number
of degrees of freedom from 3N to 3N —3.

Second, if P30, then the physical system does not
satisfy a canonical ensemble, as we have shown in Sec. II.
However, if |Py| is small, one can make the following ap-
proximations. For small |P0|, s, is very small so that
s3¥ 73 <<s3¥ 73, Hence one can neglect the first integral
containing s, in the partition function (2.13). The
remaining integral containing s, can be approximated as
follows:

|‘-KO/sg+ngText/s2tzlngText/52| ’ (41)

since K/s} <<gkpT.,, for small |Py|. After these two
approximations, the partition function reduces to the
partition function of zero total momentum. The correc-
tion is O(K,/gkpT.,), and this explains why one can
still get good average moments for a small nonzero total
momentum as discussed in Sec. III.

Third, if one ignores the momentum conservation en-
tirely as is typically done (i.e., one uses the Nosé theorem
to interpret a numerical simulation), then one sets
g =3N+1 instead of g=3N —2, and defines the instan-
taneous temperature as T=2K /(3Nky) rather than Eq.
(3.1). Since the Nosé theorem is not strictly valid, one in-
troduces a systematic error in the interpretation of nu-
merical simulations as shown in the following.

In a simulation, one compares the average moments of
temperature with those of T, (3.2)-(3.5), but the value
of T,,, is defined only as a portion of the coefficient of the
thermostat potential

gT . kgln(s) . (4.2)

Therefore, when one uses g=3N+1 and T,,,, it is
equivalent to using the correct g’=3N —2 with the actual
externally set temperature being

_3N+1
extT 3N

For a 32-particle system, T, is 3.2% larger than T,,,.
This difference could introduce a significant error in
many practical applications. For example, one can ob-
tain a wrong melting temperature by using this interpre-
tation. This error becomes large for a small system so
that one should be careful when applying the ESM to

T (4.3)

ext ext *

:_LIT
4
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small clusters.

Finally, we note that this error in actual external tem-
perature, although definitely present in a simulation
where g =3N + 1, will not be detected if one simply com-
pares (T=2K /(3Nkg)) with T,,. To see this recall
that the actual instantaneous temperature 7" is given by
Eq. (3.1) so that

3N

=T .
T 3N -3

(4.4)

According to the generalized Nosé theorem, one must
have

(T)=T, . 4.5)
Using (4.3)-(4.5) one then obtains
_ (BN—3)(3N+1)
(1) 3N(3AN—2)
3
=l . .
3N(3N —2) |* @6

This relation means that the errors in T, and T cancel
systematically. For the 32-particle LJ system, the
difference between {(T') and Ty, is only 0.03%. We em-
phasize, however, that both T,, and {(T) are off by
about 3% from the correct value T,.

Therefore the use of the Nosé theorem instead of the
generalized Nosé theorem in the interpretation of numer-
ical simulations will lead to a systematic error which can-
not be detected by a simple “self-consistency” check of
comparing {T) and T,,,. Of course, since the actual er-
ror in T, scales as O(1/N), this error will be important
only for systems with a small number of particles.

V. CONCLUSIONS

The Nosé theorem is correct when only the total ener-
gy of the system is conserved. In practical applications,
the total virtual momentum is also conserved, and there-
fore the Nosé theorem is no longer strictly valid. In-
clusion of the conservation of the total virtual momen-
tum in the original argument of Nosé leads to a general-
ized Nosé theorem that is valid in practical applications.

The generalized Nosé theorem is proved analytically.
As a consequence of the generalized Nosé theorem, if the
ES is ergodic and if the total virtual momentum of the
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N-particle system is zero, then the ESM yields a canoni-
cal ensemble for an (N —1)-particle system with a
different mass spectrum. The consequences of a different
mass spectrum are irrelevant to thermodynamic averages,
but relevant to the dynamical properties and relaxation
times of the system.

The effect of nonzero total momentum is of order
Ko/gkgT,, for small |Py|. This fact provides a numeri-
cal stability of generating a canonical ensemble in practi-
cal situations where small nonzero |Py| is introduced by
computation errors.

Numerical simulations are performed and tested
against the generalized Nosé theorem. The simulations
are found to satisfy the generalized Nosé theorem and the
numerical stability is obtained as expected from the
theory.

Finally, in some practical applications, it may be more
convenient not to explicitly constrain the total momen-
tum to be zero, but rather transform the physical Hamil-
tonian to the c.m. coordinate system and then couple the
Nosé thermostat only to the c.m. momenta. In this case
one obtains the extended-system Hamiltonian,

N
EP:‘

2

N 2 =
H: (r-,p~,s,P ):E Pi + I_L i=
ES\%i i s ,'=12m,'52 S2 M
P}
+¢({r,})+i+ngTextln(s), (5.1)
and the following equations of motion:
d’r; dr; P
i1 ; _2ds |80 To , (5.2)
dt? ms? s dt | dt M
2 2
dis_ g, |45 | Pol ] #kaTe 1
di* Q= dt M Qo s
(5.3)
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